ブログ「サイバー少年」

ブログ「サイバー少年」へようこそ!
小学六年生ごろからプログラミングを趣味にしている高校生のブログです。
勉強したことについての記事などを書いています。フリーソフトも制作、公開しています。
(当ブログについて詳しくは「ブログ概要紹介」を参照)

サイバー少年が作ったフリーソフトは「サイバー少年の作品展示場」へ

ユークリッド整域における元と高さの関係

先日に書いた記事「ユークリッド整域の素元分解可能性について自分なりに補足」で


つまりH(x) = 0のところにx = 0が、H(x) = 1のところに単元のxが、H(x) = 2のところに単元と素元のxが、H(x) > 2のところに単元、素元、いくつかの素元の積がすべて分布してる感じですね。


と記述しました。

「単元と素元~」みたいな言い方をANDと解釈するなら間違いですが、まあORと解釈するなら間違った主張ではないんですけどね。

ただ、たとえばH(x) = 2のところに単元または素元のxが分布しているという主張ですが、これは正しくはH(x) = 2となるxについて、それは単元または素元である、という主張にするべきでした。

前回の言い方だとH(x) = 2となるxが必ず存在するかのような主張となっています。


そして、その他の点でも非常にナンセンスな表現であるということに気が付きました。
後述しますが、まず単元はそんな色んなところに分布してなくて、すべて同じ高さのところにあります。

あと、前述のようにORで解釈するなら間違いではないのですが、この主張を読んだときにイメージするのはH(x) = 2のところに素元となるxがあって、H(x) > 2以降において素元の積のxも含まれてくるという感じだと思います。

そのイメージは間違いですが、主張自体は間違いではないので、たしかに読み手が悪いと言えばそうですが、私の書き方にも問題があると思いました。


それは、1という数、2という数を定数として決定してしまっているところです。
実際は定数は決定せずに、色々な元に対する高さの大小関係だけをイメージしてもらえるような書き方にするほうが自然でした。

事の発端はYahoo!知恵袋で、整数に関数Hを導入したときに、H(x) = |x|ではなくH(x) = 2×|x|とすることも可能である、という指摘を受けたことでした。

このときH(x) = 2のところに単元があって、H(x) >= 4以降に素元などがあり、あとH(x)が奇数であることはありえません。

こんなように、定数はまったく変わってくるわけですが、大小関係は変わりません。
そこで今回は、元による高さの大小関係に着目して判明することを書いていきたいと思います。

続きを読む

tag: 数学 群環体 ユークリッド 考察 勉強 関係 素数 証明 写像 帰納法

ユークリッド整域の素元分解可能性について自分なりに補足

私が群・環・体の勉強に使っている本を読んでいたら、以前の記事「[環論] ユークリッド整域で陥った詭弁」にも登場しているユークリッド整域において、

0(零元)でも単元でもない任意の元は素元の積に分解できて、それぞれの素元における単元倍の差を除いて一意である

ということが解説されていたのですが、一意性についてはいいとして、分解可能性の証明に足りない部分があると思ったので、自分なりに考えて補足してみます。

そんな、この本の著者様に意見できるほど優れた人間ではないのですが…(汗)


まず、本では元xの高さH(x)の値に注目して、H(x)がどんな値であってもxが0でも単元でもないなら素元分解可能であることから、任意のxについて0でも単元でもないなら素元分解可能であるということを述べようとしています。

ここがまずちょっと難しいですが、すべてのxは必ずなにかしらの自然数H(x)に対応しているわけですから、すべての自然数において対応するxが性質を満たすことがいえれば、すべてのxにおいて性質を満たすことがいえるわけですよ。

厳密に証明しろと言われると、能力がなくて私にはできないですが…。

逆に、すべてのxについて対応する自然数がある性質を満たすとき、すべての自然数がその性質を満たすという論法は一般には正しくありません。
ただし、xから自然数へ対応させる写像が全射であるなら、上の場合と同じ状況になるので、正しいと思います。

続きを読む

tag: 勉強 数学 群環体 ユークリッド 素数 証明 約数 帰納法 考察 写像

[環論] ユークリッド整域で陥った詭弁

今回も環について知っていないと分からない話をします。

群・環・体の勉強で、特別な環であるユークリッド整域について学び始めました。
とりあえず定義だけ読んだのですが、以下のような定義となります。

なお、本に書いてありましたが、普通の定義より強くしているそうです。

任意の整域(A,+,×)に対してa∈Aを非負整数に対応付ける関数H(x)で次のような条件を満たすものが存在する整域をユークリッド整域と呼びます。

1. H(0) = 0かつH(a) = 0ならa = 0 (0は加法の単位元)
2. a ≠ 0かつb ≠ 0なら、H(a×b) >= H(a)かつH(a×b) = H(a)となるのはbが単元のときのみ

3番目の重要そうな条件もあるのですが、ここでは使わないので省略します。
このH(x)をxの高さと呼びます。

そして、a∈Aとb∈Aの公約元xの中で高さが最大になるものを最大公約元と呼びます。
公約元は普通の環でも存在する概念ですが、最大公約元はユークリッド整域でないと存在しない概念ですね。

そして、aとbの最大公約元が単元であるときaとbは互いに素であるといいます。
つまり互いに素であるというのもユークリッド整域でいえる概念なのですが、私はそれに違和感を覚えたわけです。

続きを読む

tag: 数学 勉強 群環体 素数 証明 約数 論理 ユークリッド

一次不定方程式について調べた

前々回の記事「[環論] 素元と既約元の違いってなんなのよ」および、前回記事「数学ネタは人気が出ないのか…」で書いたとおり、
群・環・体の本を読んでいたら不定方程式にぶち当たったので、最近は群・環・体をやらずに不定方程式について調べていました。

群・環・体の本にも予備知識として不定方程式について解説があったので、それを読んだのと、あと不定方程式は高校一年生のときにやりましたから、数Aの教科書をひっぱりだしてきて読んでみました。

覚えてないからな!!

そこで思ったのですが、本によって不定方程式の解法にしても全然、やり方が違いますね。
数学って知識を丸コピするよりか、自分で考える学問ですから考える人が違うと内容もだいぶ違ってしまうんでしょうね。

私は丸コピしか出来ないですが…。


さて、今回はレポートを書く気分で、(一次の)不定方程式について調べて学んだことを記していきたいと思います。

続きを読む

tag: 数学 方程式 勉強 素数 証明 数学的帰納法 学校

[環論] 素元と既約元の違いってなんなのよ

環について知っていないと分からない話を今回はします。

私が群・環・体の勉強に使っている本では、環の章に可換環における素元の定義として

p = abで表せるならaかbのいずれかが単元であるとき、pは素元である
(pは0でも単元でもない)


というふうに書かれていたんですが、インターネットで調べてみたらこれは実は素元の定義ではなく既約元というものの定義だそうです。

まぎらわしいですね。
これは私が読んでいる本が悪いのか。

私が群・環・体の勉強に使っている本は分かりやすい素晴らしい本ですけども、
環の定義として一般的には、乗法について可換であることは公理としませんが、可換環ではなく普通の環が乗法について可換であるとされていたりして、
素元の件も含めてちょっと一般的な定義とズレていますね。


それで、本当の素元の定義とは何かといいますと、

まず可換環においてp | aと書いたときa = xpとなるxが存在するという意味にして、まあ直感的にはpがaを割り切るといえますけども、

p | abであるならp | aまたはp | bであるとき、pは素元である
(pは0でも単元でもない)


ということになります。


しかし、素元と既約元は似ているというか、環よりもう少し条件を強くした代数系においては一致することがあるんですよね。

続きを読む

tag: 数学 群環体 証明 素数 方程式

当ブログをご利用(閲覧等)になる場合は必ず「当ブログの利用規定」をお守りください。