ブログ「サイバー少年」

ブログ「サイバー少年」へようこそ!
小学六年生ごろからプログラミングを趣味にしている高校生のブログです。
勉強したことについての記事などを書いています。フリーソフトも制作、公開しています。
(当ブログについて詳しくは「ブログ概要紹介」を参照)

サイバー少年が作ったフリーソフトは「サイバー少年の作品展示場」へ

スポンサーサイト

上記の広告は1ヶ月以上更新のないブログに表示されています。
新しい記事を書く事で広告が消せます。

tag:

あけおめ 2018年 ~ ラストスパート ~

あけましておめでとうございます!

2018年、始まりましたね。
いかがお過ごしになったでしょうか。

今年もよろしくお願いしますと言いたいところなのですが、ご周知のとおり残り3ヶ月という短い期間で当ブログ「サイバー少年」は更新終了してしまいます。

この残り3ヶ月、まだ有限体の記事を書いていないので、それが先月中に書き終えるはずでしたから若干、遅れているのですが、とりあえず有限体の記事を書きます。

数学の勉強も、先月に群・環・体の本を読み終えましたし、最後にちょっと確認したい事項というのも、昨日の今日に命題が偽であることが判明しましたので、ひとまず終了ということになりました。

そんで、あとは有限体の記事でアウトプットしてから、しばらく数学とは関わりを持たないと思いますね。

およそ2年間、数学の勉強を続けてまいりました。
数学は面白いですが、私には難しいです。

本もノートも手に取らず、ひたすら頭の中で考え込んで数時間、なんて学問はめずらしいと思いますね。

今後、少なくともFEの春期試験が四月ですから、FEの勉強を終えてから数学に戻ってくるかどうかは、私が数学をやりたいと思えばそうなるでしょうし、FEの勉強で新たな(懐かしい?)世界が開けて、他の分野をやってみようかという気分になるかもしれませんね。

しかしながら、四月以降の話ですから、私がどうなったのかは現在の閲覧者の皆様は知り得ないことです。
こんなお別れを示唆する時が来るのも、昔じゃ想像できなかったですね~。

スポンサーサイト
続きを読む

tag: ブログ「サイバー少年」 数学 勉強 FE 情報 新年 目標 終活

有限体の勉強まとめ (前編)

できれば昨年中に書いておきたかった有限体の勉強まとめです。
内容が広いので文量はともかく、執筆時間が相当なものになるだろうということで、前編、後編でお送りします。

今のところ予定している配分では、特に後編がかなりヘビーになると思っています。
内容が広いって言っても、広くないんですけどね。
私が書くのが遅いという…。

前編は導入部分の話だけで証明といった証明も特になく、準備運動のようなものです。
いや、前編もかなり時間かけて書いたんですけど。


さて、まず体についてはご存知のものとします。
有限体とは、体を構成している集合が有限集合であるものです。

有限集合ですから要素数を自然数で表すことができます。
この要素数を体の位数と呼びます。

後述する体の要素についての位数というのもあって、両方とも位数という名前ですが別概念です。
同じ名前やめろよと言いたいですが、余談として、たぶん位数がnの体の要素が構成する乗法群が集合の要素数として位数nになるから、なんでしょうね。


なお、ここで体の位数が1、体の要素が1 = 0のひとつだけということは、ありえません。
(このような代数系である場合、零環という名前の環になります。)

この話題は記事「体の準同型写像に必要な定義」でもしましたが、どうやら体の公理系に零環は矛盾しないのだけれど、
零環でない体が充足してくれる魅力的な性質が零環だけ充足してくれないことがあって、テンションだだ下がりだから排除しておきたい、
しかし零環というたったひとつのケースを除外するための公理を設定するのもなんだかなぁって感覚で、暗黙的に体から除外しているみたいですね。

厳密にやるなら体の公理に零環を除外することを加えるべきだと思います。
ただ証明でいちいち「ここで1 = 0ではないので…」と言及するのも面倒ですからねぇ。

数学はフィーリングで考えている部分も大きいので、零環でない体に共通するイメージの論理的妥当性を主張するために零環ではないという条件を持ち出さなければならないのは邪魔です。

続きを読む

tag: 数学 群環体 集合 有限 同値 素数 ユークリッド 勉強 多項式 終活

有限体の勉強まとめ (後編)

記事「有限体の勉強まとめ (前編)」の続きです。
これは長くなりますなあ…。
まあ、最後なので気合い入れて執筆していきましょう。

Yahoo!知恵袋でヒントをもらったりしていますが、細かなところは自分で考えた理論展開です。
全体的な理論展開の方針は、私が読んでいた本にならっています。


まず、有限体の話に入る前に、あとで使う定理として、環同型の話をします。
環Q, Rの間に同型写像φ:Q→Rが定義できるとします。

定理1: 単元c∈Qについてφ(c)∈Rは単元である。
証明
すべてのa∈Qについてa = ca'が成り立ちます。
両辺をφに入れてφ(a) = φ(c)*φ(a')が成り立ちます。
任意のx∈Rについてx = φ(a)となるaが存在し、x = φ(c)*φ(a')です。
よってφ(c)は任意のx∈Rを割り切るため、単元です。

定理2: 単元でないa∈Qについてφ(a)∈Rは単元でない。
証明
φの逆写像φ'を利用して、定理1のように
「単元c∈Rについてφ'(c)∈Qは単元である」と言えます。
対偶をとり「単元でないφ'(c)∈Qについてc∈Rは単元でない」と言えます。
これはφ'が全射なのでφ'(c) = aと置けますが、そのときc = φ(a)と表せます。

定理3: 素元p∈Qについてφ(p)∈Rは素元である。
証明
φ(p) = abとなる任意のa,bを置いたとき、φ'(φ(p)) = p = φ'(a)*φ'(b)が成り立ちます。
pは素元なのでφ'(a)とφ'(b)のどちらかは単元です。
定理1よりφ(φ'(a)) = aとφ(φ'(b)) = bのどちらかは必ず単元です。
pは単元でないので定理2よりφ(p)は単元でなく、0でもないのでφ(p)は素元です。


それでは、有限体の話を始めましょう。

続きを読む

tag: 数学 群環体 証明 論理学 多項式 有限 集合 同値 勉強 終活

2年間ほど数学をやった感想

私が数学(大学でやるような理論を読む数学)の勉強を始めたのは、ちょうど当ブログの記事「集合と写像の勉強まとめ」を書いていたあたりからですから、2年以上数学をやってきたことになります。

今では群・環・体の本も読み終えて、有限体のまとめ記事を最後に当ブログに書き残すことができて、一段落したなと感じますね。
(記事「有限体の勉強まとめ (前編)」、記事「有限体の勉強まとめ (後編)」を参照)

今はしばらく数学から離れて他の勉強をする期間を設けようということで、基本情報技術者試験(FE)の勉強をしています。


FEの勉強をしていて思うのですが、情報科学って別に暗記する学問ではないんですよ。
めちゃめちゃ物事の因果関係があってシステムが構築されてるので、論理的な推論というのは多く行うのですが、ただ、なんか数学の理論構築とは違うんですよね。

情報科学は「定義→性質→定義→性質…」みたいに自明な推論をひたすら積み重ねていく感じがあって、理論を読むという意味では面白みに欠けます。
いや、まあ分野にもよるんでしょうけど。

その反面、数学の理論は、ご存知のとおり、「こんな発想してくるか!?」という推論が多くて、頭は使いますが、面白いです。

頭は使うというのが問題なんですけどね。
読む程度なら、なんとかついていけるレベルですが、自分で証明を考えるとかだと、私には到底不可能な思考を迫られます。

結局、私が今まで自分で考えてきた証明って、情報科学じゃないけど自明に自明を重ねた結果、ちょっと背伸びした推論ができたってだけですからねぇ。


要するに私の脳みそのレベルでは情報科学やってろって話なのですが、情報科学も曲者で、推論はシンプルですが、色んな要素がごちゃごちゃしていて、複雑なんですよね。

数学って意外と導入される概念は少なくて、シンプルに事が運ぶんですが、情報科学は登場人物が多すぎて、しかも場合によっては覚えることを必要としますから、これはこれで難しい。

それが原因で、今はFEの対策本を読んでいますけど苦痛ですね~。

数学の本を読んでいるときは、たまげた発想は自分では出来ないけれど、読むのは頑張れば出来るので、達成したときの喜びがクセになります。

読んでいて分からない間は、とんでもない苦痛で二度と数学などやるものかと思うんですが、結局なんとなく理解してしまって、もう一回ってふうに数学やっちゃうんですよね(違法薬物)。


情報科学は前述のとおり、読んでいて分からないってことは、あんまり無いのですが、とにかく面倒くさい、それだけです。
ですから単純作業、しかも記憶力がない私に大量の記憶を要求してくるので、これは苦痛です。

FEの勉強、はやく終わらねえかな、と本を読んでいて毎回のように思うんですけどね。
情報科学は、理論はつまらないので、理論を応用して自分でソフトなりハードなりを作り上げることをモチベーションにしないと、やってられないですね。

続きを読む

tag: 数学 勉強 群環体 論理学 形式 感想 モチベーション FE 大学 哲学

当ブログをご利用(閲覧等)になる場合は必ず「当ブログの利用規定」をお守りください。

上記広告は1ヶ月以上更新のないブログに表示されています。新しい記事を書くことで広告を消せます。