ブログ「サイバー少年」

ブログ「サイバー少年」へようこそ!
小学六年生ごろからプログラミングを趣味にしている高校生のブログです。
勉強したことについての記事などを書いています。フリーソフトも制作、公開しています。
(当ブログについて詳しくは「ブログ概要紹介」を参照)

サイバー少年が作ったフリーソフトは「サイバー少年の作品展示場」へ

一次不定方程式について調べた

前々回の記事「[環論] 素元と既約元の違いってなんなのよ」および、前回記事「数学ネタは人気が出ないのか…」で書いたとおり、
群・環・体の本を読んでいたら不定方程式にぶち当たったので、最近は群・環・体をやらずに不定方程式について調べていました。

群・環・体の本にも予備知識として不定方程式について解説があったので、それを読んだのと、あと不定方程式は高校一年生のときにやりましたから、数Aの教科書をひっぱりだしてきて読んでみました。

覚えてないからな!!

そこで思ったのですが、本によって不定方程式の解法にしても全然、やり方が違いますね。
数学って知識を丸コピするよりか、自分で考える学問ですから考える人が違うと内容もだいぶ違ってしまうんでしょうね。

私は丸コピしか出来ないですが…。


さて、今回はレポートを書く気分で、(一次の)不定方程式について調べて学んだことを記していきたいと思います。

続きを読む

tag: 数学 方程式 勉強 素数 証明 数学的帰納法 学校

数学ネタは人気が出ないのか…

先日、記事「PowerShellでジェネリックス!」にて、

ありがとう 参考になりました

というコメントを頂きました。


このブログの方針として、何か疑問に思ったことを検索したらこのブログがヒットして、それを見て疑問が解決する、みたいなブログになりたいと考えているので、
このようなコメントを頂けたのはとても光栄なのですが、

数学ネタをメインにしていくのは閲覧者のニーズに合致しているのか…!!??


なんか数学のネタに全然コメントが来ないし、このまえ記事「数学の勉強について雑記…」に一回だけ来ましたけど情報系の学部の大学生の方でしたし、

当ブログの閲覧者ってやっぱりプログラマとかプログラミング好きとかそういう方々だと思うんですよね。


まあプログラマというと数学好きを兼ねてる割合が高めだと思うんですが、数学好きじゃない人も多いですし、数学好きだとしても数学メインじゃないからコメントできるほど数学の知識もなかったり、数学の長文の記事を読むつもりもない、みたいな感じですか。


数学に傾倒したら駄目なのかチクショーーー!!!!!
どうやったら数学屋の方々にたくさん見てもらえるブログになれるんでしょうか。

ただ、数学好きの方々に見てもらえない理由はいくつか思い当たるんですけどね。


・数学好きの絶対数がプログラミング好きより少ない。

・プログラミング好きの人はブログなどのインターネットの文献を重要視している一方で、数学好きは書籍とか見てて、Webでもブログみたいなのは見ない。

・とくに当ブログのような新規性のないクソブログは見ない。


そもそも当ブログの閲覧者がほぼリピーターで固定であると思われるというのもあるので、既存の閲覧者に数学好きになってもらうしかない!!!

頑張れ閲覧者!!!!!!

続きを読む

tag: 勉強 数学 ブログ 閲覧者 プログラミング コメント 群環体 方程式

[環論] 素元と既約元の違いってなんなのよ

環について知っていないと分からない話を今回はします。

私が群・環・体の勉強に使っている本では、環の章に可換環における素元の定義として

p = abで表せるならaかbのいずれかが単元であるとき、pは素元である
(pは0でも単元でもない)


というふうに書かれていたんですが、インターネットで調べてみたらこれは実は素元の定義ではなく既約元というものの定義だそうです。

まぎらわしいですね。
これは私が読んでいる本が悪いのか。

私が群・環・体の勉強に使っている本は分かりやすい素晴らしい本ですけども、
環の定義として一般的には、乗法について可換であることは公理としませんが、可換環ではなく普通の環が乗法について可換であるとされていたりして、
素元の件も含めてちょっと一般的な定義とズレていますね。


それで、本当の素元の定義とは何かといいますと、

まず可換環においてp | aと書いたときa = xpとなるxが存在するという意味にして、まあ直感的にはpがaを割り切るといえますけども、

p | abであるならp | aまたはp | bであるとき、pは素元である
(pは0でも単元でもない)


ということになります。


しかし、素元と既約元は似ているというか、環よりもう少し条件を強くした代数系においては一致することがあるんですよね。

続きを読む

tag: 数学 群環体 証明 素数 方程式

当ブログをご利用(閲覧等)になる場合は必ず「当ブログの利用規定」をお守りください。