ブログ「サイバー少年」

ブログ「サイバー少年」へようこそ!
小学六年生ごろからプログラミングを趣味にしている高校生のブログです。
勉強したことについての記事などを書いています。フリーソフトも制作、公開しています。
(当ブログについて詳しくは「ブログ概要紹介」を参照)

サイバー少年が作ったフリーソフトは「サイバー少年の作品展示場」へ

数学ネタは人気が出ないのか…

先日、記事「PowerShellでジェネリックス!」にて、

ありがとう 参考になりました

というコメントを頂きました。


このブログの方針として、何か疑問に思ったことを検索したらこのブログがヒットして、それを見て疑問が解決する、みたいなブログになりたいと考えているので、
このようなコメントを頂けたのはとても光栄なのですが、

数学ネタをメインにしていくのは閲覧者のニーズに合致しているのか…!!??


なんか数学のネタに全然コメントが来ないし、このまえ記事「数学の勉強について雑記…」に一回だけ来ましたけど情報系の学部の大学生の方でしたし、

当ブログの閲覧者ってやっぱりプログラマとかプログラミング好きとかそういう方々だと思うんですよね。


まあプログラマというと数学好きを兼ねてる割合が高めだと思うんですが、数学好きじゃない人も多いですし、数学好きだとしても数学メインじゃないからコメントできるほど数学の知識もなかったり、数学の長文の記事を読むつもりもない、みたいな感じですか。


数学に傾倒したら駄目なのかチクショーーー!!!!!
どうやったら数学屋の方々にたくさん見てもらえるブログになれるんでしょうか。

ただ、数学好きの方々に見てもらえない理由はいくつか思い当たるんですけどね。


・数学好きの絶対数がプログラミング好きより少ない。

・プログラミング好きの人はブログなどのインターネットの文献を重要視している一方で、数学好きは書籍とか見てて、Webでもブログみたいなのは見ない。

・とくに当ブログのような新規性のないクソブログは見ない。


そもそも当ブログの閲覧者がほぼリピーターで固定であると思われるというのもあるので、既存の閲覧者に数学好きになってもらうしかない!!!

頑張れ閲覧者!!!!!!

続きを読む

tag: 勉強 数学 ブログ 閲覧者 プログラミング コメント 群環体 方程式

[環論] 素元と既約元の違いってなんなのよ

環について知っていないと分からない話を今回はします。

私が群・環・体の勉強に使っている本では、環の章に可換環における素元の定義として

p = abで表せるならaかbのいずれかが単元であるとき、pは素元である
(pは0でも単元でもない)


というふうに書かれていたんですが、インターネットで調べてみたらこれは実は素元の定義ではなく既約元というものの定義だそうです。

まぎらわしいですね。
これは私が読んでいる本が悪いのか。

私が群・環・体の勉強に使っている本は分かりやすい素晴らしい本ですけども、
環の定義として一般的には、乗法について可換であることは公理としませんが、可換環ではなく普通の環が乗法について可換であるとされていたりして、
素元の件も含めてちょっと一般的な定義とズレていますね。


それで、本当の素元の定義とは何かといいますと、

まず可換環においてp | aと書いたときa = xpとなるxが存在するという意味にして、まあ直感的にはpがaを割り切るといえますけども、

p | abであるならp | aまたはp | bであるとき、pは素元である
(pは0でも単元でもない)


ということになります。


しかし、素元と既約元は似ているというか、環よりもう少し条件を強くした代数系においては一致することがあるんですよね。

続きを読む

tag: 数学 群環体 証明 素数 方程式

近況報告というか話題のちゃんぽん

ただいま、記事「F#の基礎勉強まとめ (前編)」の後編を執筆中であります。
途中つなぎの記事を書くほど大規模なブログ記事を書くのは久しぶりですね。

現在、リスト、配列、タプル、レコードまで書き終わったのですが、判別共用体、パターンマッチ、例外を書いて手短に終わろうと思います。

ただし、パターンマッチが本当に内容的に濃い!
大変ですね。

さて、上記リンクの記事でも書いてあるように、F#の文法は解説しても、実際にプログラム書いたことがほぼ無いんですよね~。

というわけで、ちょっと前ですが、なにかプログラムを書こうということで、なんともベタなじゃんけんのプログラムを書きました。

せっかくなのでYahoo!ボックスに上げておきましたから、ご覧ください。
なにせF#の経験が浅いので、変な箇所があるかもしれませんが、ぷぷぷ~と笑ってないでコメントにてご指摘下さいませ。

Janken.txt (Yahoo!ボックス)
http://yahoo.jp/box/_9_RYk


このプログラムを書きながら思ったのですが、関数に引数として別の関数の戻り値を渡してもいいし、
関数に直接、別の関数を渡しちゃって、むこうの関数で引数を与えて戻り値を作ってもいい、というこの関数と値の区別のルーズさは特徴的ですね。

今回の場合は逆にそれがややこしくなって、変なプログラムになってしまったかもしれませんが…。

続きを読む

tag: プログラミング F# 数学 証明 論理学 勉強 群環体 結合法則 Nexus iPad

気がつけば年の暮れ 2016

こんばんは。真夜中ですね~。
生活リズムがぐちゃぐちゃですね~。
よろしいことではない…。

今年も終わりますね~。
今年は本当に早かったですね。

最近、なんとも年寄りじみた発言ですが、目まぐるしく時が過ぎていくので今年が西暦何年とかすぐに答えられるかと問われますと、危うくなってきました。

西暦はまだいいですが、和暦なんてもう出ないですね。
その西暦優位の感覚はちょっと若いのかな。
そうそう、あと、自分の年齢も同じように、すぐに出ないですよね。


当記事の本題に入る前にざっと年末の近況報告をしますが、前回記事「何番煎じだ!?近況報告」で書いた群・環・体のモチベーションが上がらないというのが、なんとまだ続いております。

さすがにヤバいですね…。
まあ上記記事でも書いた(さらに前の記事を引用した)のですが、ダラダラが続いてヤバいなと思い始めるのが、次の勉強を頑張る時期へと突入する原動力になるんですけどね。


一方でF#は、上記記事で書いたとおり勉強の頻度が少ないことを無視すれば順調…かと思われるのですが、姉妹ブログにも書きましたが最近なんか難しくなってきました。

次は判別共用体というのを勉強するんですが以前に内容をざっと見てみたら、今までで一番、難しそうでしたので理解できるかどうか不安ですね。

ただまあ、もし順調に事が運べば本年末に勉強したことまとめを書いて、来年に新年の挨拶記事なんかを書いて、来年の通常の記事の一発目はF#の勉強内容をまとめる記事になるんじゃないですかねぇ(他人事)。

続きを読む

tag: 数学 プログラミング 論理学 F# 群環体 勉強 パソコン 新年 目標

何番煎じだ!?近況報告

今、記事タイトル入力して間違えてエンターキーを押してしまって、タイトルだけで投稿されてしまいました。
なので現在から当記事を書き終わるまでの間に当ブログにアクセスした方はタイトルだけの記事を見て「なんだこれ!?」と思われるかもしれません。

たまにこういうのあるんですが、FC2ブログのこの仕様よくないですよね。
タイトルの入力ボックスではエンターキー無効にしてほしい。


さて、ネタがないので近況報告でつなぐという、当ブログがやる気のない時期によくやるやつです。

群・環・体やF#の勉強がもう少しまとまった成果を出せれば、内容をまとめる記事を書いてもいいかなと思っているんですが、
(まあ執筆が大変な部類なのでそれに耐えうるモチベがあればの話ですが)
最近はどうも勉強する気が起きない時期に突入してしまっておりまして、時間が掛かりそうです。

記事「論理学の勉強コンプリート!!!」で書きましたが、“頑張って勉強する時期、燃え尽きて怠ける時期、さすがに怠け過ぎだなと思ってまた頑張る時期、を繰り返している”というわけなんですよね~。


なんでそうなるのか自分でもよくわからないですけど、なんというか「数学おもしれえ!もっとやろう」という念と「うわっ数学むずかしいわ、やりたくねえ」という念の決して相反しない二つが自分の中で闘っていて、
やってる内容が難しい部分に突入してくると後者の念が勝ってしまうので、少なくともその部分を脱するまではペースも遅めになってしまうのかと思いますね。

そんでもって、今やってる内容は群・環・体でいえば置換群の性質を利用して組み合わせの問題を解くという部分を読んでるんですが、すごく難しいんですよ。

具体的には、記号が大量に定義されていて何が何を表してるのか意味分からなくなってくるのと、論理展開がめちゃくちゃ早いのが同時に襲ってくるので難しいです。

ですから今はあんまりやる気が出なくて、時間が掛かるわけですね。

続きを読む

tag: 近況報告 数学 群環体 F# 勉強 マイコン 電子工作

当ブログをご利用(閲覧等)になる場合は必ず「当ブログの利用規定」をお守りください。