ブログ「サイバー少年」

ブログ「サイバー少年」へようこそ!
小学六年生ごろからプログラミングを趣味にしている高校生のブログです。
勉強したことについての記事などを書いています。フリーソフトも制作、公開しています。
(当ブログについて詳しくは「ブログ概要紹介」を参照)

サイバー少年が作ったフリーソフトは「サイバー少年の作品展示場」へ

体の準同型写像に必要な定義

群・環・体の本を読んでおりましたら、体の準同型写像の定義として、
体L,Kについて、φ:L→Kは

1. φ(x+y) = φ(x) + φ(y)
2. φ(x*y) = φ(x) * φ(y)

を満たすことはもちろんのこと、L,Kの乗法に関する単位元1_L,1_Kについて

3. φ(1_L)  = 1_K

が成り立つならば、L,Kの加法に関する単位元0_L,0_Kと、xの乗法に関する逆元x'について

4. x != 0_Lならばφ(x) != 0_Kおよびφ(x') = φ(x)'

が成り立って、この4つを満たすφが体の準同型写像であるとされていました。


ただ、群の準同型写像が単位元を単位元に写すので、それと同じように簡約法則を使って、3.も1.と2.から導けるんじゃないのと、思っていました。

ただ、環の準同型写像の定義を引き継いでいるような文脈だったので、あえて3.を要請している程度なのだろうかというわけです。


こないだ記事「群・環の同型は同値関係」を書いたときも、完全にそう思っていて、
環の準同型写像の定義が3.を要請することについて、

+に関する単位元が一致することは簡約法則から導けるのですが、*については簡約法則が使えないので環の場合は*に関する単位元1が一致することも条件となります。

と書きました。

しかし、色々と考えたり調べたりしてみたら、どうやら、そんなに簡単な話ではないっぽいです。
結論から言いますと、私が読んでいる本の文脈では3.を要請するっぽいですね。

続きを読む

tag: 数学 証明 群環体 勉強 命題 写像 公理 論理 同型 ゼロ

群の準同型定理のイメージをやっと掴めた

群の準同型定理ですが、今まで本を読んで論理的に定理として成り立つことは分かっていたのですが、正直なところ言っている意味、イメージが分かりませんでした。

命題のイメージを掴むということは、わりと大事であると思います。

命題が、証明を読んで論理的に推論可能であることだけを知っていても、
結局なにを言ってるんだ??という状態では、どのように命題を利用していけばいいのか見当もつかないですからね。


イメージを掴むことを心がけてはいるのですが、今まで準同型定理はイメージできなかったんですよね。
体論に入っているというのに、最近ようやく理解できました。


準同型写像φ:G→G'について、φによるGの核(これはGの正規部分群)でGを類別した商群と、φによるGの像は同型であるという定理ですが、

残念ながら有限集合でしか通用しないイメージですが、ようするにGの像⊆G'はφが単射でない限りGより小さいので、まずGの核でGを類別してGより小さい商群を作ります。

このとき商群の中身がどうなってるかが肝心です。
これはφでG'に写したときに同じ元になるGの元をまとめた同値類系となっています。
(これを示すために証明が必要ですが、証明は本で読んでそこからイメージしました。)

ですからφが単射なら同値類は、それぞれひとつしか元を持ちません。
そうでなければどこかに2つ以上の元を持つ同値類があります。


そして、この商群とGの像が一対一に対応しているという話ですが、当たり前といえば当たり前であります。

Gの像と対応している商群の同値類は、Gの像と対応していることを考えれば必ず存在しますし、Gの像の中の同じ元へと写されるGの元は同じ同値類に属するはずですから、これは一対一となります。

この一対一の対応に則した写像を定めれば、その写像は全単射となりますね。
あとは、その写像が準同型写像の定義を満たすことが必要ですが、実はこのメカニズムはイメージできていません。

ただ要点は一対一対応があるということだと思うので、まあ大丈夫じゃないかなと思いますね。


ちなみにGの核は商群の元、同値類のひとつですが、φ(e)=e'より、Gの核には必ずGの単位元eが入っているので、
Gの核の元はすべてφ(e)と同じ値になるということでしたので、つまりすべてe'に写しますし、Gの核に入っていないようなφ(a)=e'となるaは存在しません。


以上です。
まだイメージを掴めていない人が、これを読んでも説明がヘタクソすぎてよく分からないと思いますが、私自身はだいぶイメージを掴めて満足しています。

自己満足の記事です。

わりと当たり前のことを言っているだけの定理だったのですが、イメージできたときは少し面白かったですね。

ただ、すごく大事な定理らしいのですが、どのように活用するのかよく分かりません。
どうなんでしょうか。

tag: 数学 証明 群環体 勉強 命題 同値 写像 同型 集合

群・環の同型は同値関係

今日は読み続けている群・環・体の本の、環の章を読み切りました!
最後は、環A,Bが同型なら、環Aが整域なら環Bも整域であるし、環Aが体なら環Bも体であるという定理の証明でした。

同型ならばイメージとしては、同じ構造をしているので当然、整域だとか体だとかの構造は受け継ぐだろうと思いますが、証明しろって言われると、なかなか難しいですね。


証明を本で読みまして、よくよく考えたら確かに、本質的には同じ構造をしていることを使っているんだろうなぁと思わされるのですが、一見した程度ではどういう発想でこうなったのか理解できません。

数学できる人は的確に何を言えば証明できるのか考えられるんですかね。
私もそんな人間に憧れます。


さて、その整域や体などの構造がAからBへ受け継がれることの証明は、ここでは語りませんが、本では、AとBが同型なら、逆にBからAへと構造を受け継ぐことも真であると主張しており、
なぜならばAとBが同型なら明らかにBとAが同型であるので、AからBへ構造が受け継ぐのと同様の証明で示されるとしています。

ようは同型というのは、それを表す記号から推測したって、どう考えても同値関係であり、ここでは対称律を用いた、と私は読み解きます。


しかしながら、本の中では明確にふたつの環が同型であることが同値関係であることの証明がなされていません。
そこで考えてみて、証明できたのですが、反射律と推移律を示すことは比較的簡単だったものの対称律だけは難しかった!

対称律を主に書いていきたいと思います。

続きを読む

tag: 数学 勉強 群環体 写像 同値 演算 証明 ブログ「サイバー少年」

商群と演算の両立性と、ときどき正規部分群

私が読んでいる群・環・体の本では、環の章を読んでいるのですが「環RをイデアルIで類別する同値関係は加法、減法、乗法に関してRの元と両立する」と書いていて、ここの減法に関しても両立するというところに注目していただきたいのですが、

加法、減法に関して両立するのはRを群と見なすと、この同値関係はRを正規部分群Iで類別する同値関係になるから、これが加法、減法に関して両立するのは群の章で証明したよね、という説明になっていました。


(なお念のため説明しておくと、同値関係が演算△に関して両立しているとは、aとbが同値、cとdが同値ならa△cとb△dが同値であることを表します。)


しかし、群の章を読み返してみると、加法に関して両立することしか書いておらず、「あれれ?減法はなんで両立してるんだ?」と思ったわけです。

そんでもって少し考えたのですが、「あ、環Rは群と違って加法に関して必ず可換だ」と、思いつきました。

a,b∈Rについてaとbが同値、記号で書けばa~bとはa + (-b) ∈ Iだったのですが、可換律よりa + (-b) = -b + a = -b + (-(-a) ∈ Iなので、-b~-a、対称律より-a~-b、つまりa~bならば-a~-bとなります。

ここで、x,y,a,b∈Rについてx~y,a~bだった場合、x~y,-a~-bとなりますので、加法に関しては両立していたのでx+(-a) ~ y+(-b)、ということで減法に関しても両立していることがわかりました。

要するに、これを環の話だけでなく群の話に還元すると、その群が可換群であれば部分群で類別する同値関係は減法に関しても両立する、ということになります。


しかし、実は可換群でなくても、加法に関して両立しているなら必然的に減法に関しても両立しているということが後の考察により判明しましたので、それに気づくまでの過程を記していきたいと思います。

続きを読む

tag: 数学 群環体 勉強 写像 演算 同値 可換律 証明 イデアル

ユークリッド整域における元と高さの関係

先日に書いた記事「ユークリッド整域の素元分解可能性について自分なりに補足」で


つまりH(x) = 0のところにx = 0が、H(x) = 1のところに単元のxが、H(x) = 2のところに単元と素元のxが、H(x) > 2のところに単元、素元、いくつかの素元の積がすべて分布してる感じですね。


と記述しました。

「単元と素元~」みたいな言い方をANDと解釈するなら間違いですが、まあORと解釈するなら間違った主張ではないんですけどね。

ただ、たとえばH(x) = 2のところに単元または素元のxが分布しているという主張ですが、これは正しくはH(x) = 2となるxについて、それは単元または素元である、という主張にするべきでした。

前回の言い方だとH(x) = 2となるxが必ず存在するかのような主張となっています。


そして、その他の点でも非常にナンセンスな表現であるということに気が付きました。
後述しますが、まず単元はそんな色んなところに分布してなくて、すべて同じ高さのところにあります。

あと、前述のようにORで解釈するなら間違いではないのですが、この主張を読んだときにイメージするのはH(x) = 2のところに素元となるxがあって、H(x) > 2以降において素元の積のxも含まれてくるという感じだと思います。

そのイメージは間違いですが、主張自体は間違いではないので、たしかに読み手が悪いと言えばそうですが、私の書き方にも問題があると思いました。


それは、1という数、2という数を定数として決定してしまっているところです。
実際は定数は決定せずに、色々な元に対する高さの大小関係だけをイメージしてもらえるような書き方にするほうが自然でした。

事の発端はYahoo!知恵袋で、整数に関数Hを導入したときに、H(x) = |x|ではなくH(x) = 2×|x|とすることも可能である、という指摘を受けたことでした。

このときH(x) = 2のところに単元があって、H(x) >= 4以降に素元などがあり、あとH(x)が奇数であることはありえません。

こんなように、定数はまったく変わってくるわけですが、大小関係は変わりません。
そこで今回は、元による高さの大小関係に着目して判明することを書いていきたいと思います。

続きを読む

tag: 数学 群環体 ユークリッド 考察 勉強 関係 素数 証明 写像 帰納法

ユークリッド整域の素元分解可能性について自分なりに補足

私が群・環・体の勉強に使っている本を読んでいたら、以前の記事「[環論] ユークリッド整域で陥った詭弁」にも登場しているユークリッド整域において、

0(零元)でも単元でもない任意の元は素元の積に分解できて、それぞれの素元における単元倍の差を除いて一意である

ということが解説されていたのですが、一意性についてはいいとして、分解可能性の証明に足りない部分があると思ったので、自分なりに考えて補足してみます。

そんな、この本の著者様に意見できるほど優れた人間ではないのですが…(汗)


まず、本では元xの高さH(x)の値に注目して、H(x)がどんな値であってもxが0でも単元でもないなら素元分解可能であることから、任意のxについて0でも単元でもないなら素元分解可能であるということを述べようとしています。

ここがまずちょっと難しいですが、すべてのxは必ずなにかしらの自然数H(x)に対応しているわけですから、すべての自然数において対応するxが性質を満たすことがいえれば、すべてのxにおいて性質を満たすことがいえるわけですよ。

厳密に証明しろと言われると、能力がなくて私にはできないですが…。

逆に、すべてのxについて対応する自然数がある性質を満たすとき、すべての自然数がその性質を満たすという論法は一般には正しくありません。
ただし、xから自然数へ対応させる写像が全射であるなら、上の場合と同じ状況になるので、正しいと思います。

続きを読む

tag: 勉強 数学 群環体 ユークリッド 素数 証明 約数 帰納法 考察 写像

[環論] ユークリッド整域で陥った詭弁

今回も環について知っていないと分からない話をします。

群・環・体の勉強で、特別な環であるユークリッド整域について学び始めました。
とりあえず定義だけ読んだのですが、以下のような定義となります。

なお、本に書いてありましたが、普通の定義より強くしているそうです。

任意の整域(A,+,×)に対してa∈Aを非負整数に対応付ける関数H(x)で次のような条件を満たすものが存在する整域をユークリッド整域と呼びます。

1. H(0) = 0かつH(a) = 0ならa = 0 (0は加法の単位元)
2. a ≠ 0かつb ≠ 0なら、H(a×b) >= H(a)かつH(a×b) = H(a)となるのはbが単元のときのみ

3番目の重要そうな条件もあるのですが、ここでは使わないので省略します。
このH(x)をxの高さと呼びます。

そして、a∈Aとb∈Aの公約元xの中で高さが最大になるものを最大公約元と呼びます。
公約元は普通の環でも存在する概念ですが、最大公約元はユークリッド整域でないと存在しない概念ですね。

そして、aとbの最大公約元が単元であるときaとbは互いに素であるといいます。
つまり互いに素であるというのもユークリッド整域でいえる概念なのですが、私はそれに違和感を覚えたわけです。

続きを読む

tag: 数学 勉強 群環体 素数 証明 約数 論理 ユークリッド

一次不定方程式について調べた

前々回の記事「[環論] 素元と既約元の違いってなんなのよ」および、前回記事「数学ネタは人気が出ないのか…」で書いたとおり、
群・環・体の本を読んでいたら不定方程式にぶち当たったので、最近は群・環・体をやらずに不定方程式について調べていました。

群・環・体の本にも予備知識として不定方程式について解説があったので、それを読んだのと、あと不定方程式は高校一年生のときにやりましたから、数Aの教科書をひっぱりだしてきて読んでみました。

覚えてないからな!!

そこで思ったのですが、本によって不定方程式の解法にしても全然、やり方が違いますね。
数学って知識を丸コピするよりか、自分で考える学問ですから考える人が違うと内容もだいぶ違ってしまうんでしょうね。

私は丸コピしか出来ないですが…。


さて、今回はレポートを書く気分で、(一次の)不定方程式について調べて学んだことを記していきたいと思います。

続きを読む

tag: 数学 方程式 勉強 素数 証明 数学的帰納法 学校

[環論] 素元と既約元の違いってなんなのよ

環について知っていないと分からない話を今回はします。

私が群・環・体の勉強に使っている本では、環の章に可換環における素元の定義として

p = abで表せるならaかbのいずれかが単元であるとき、pは素元である
(pは0でも単元でもない)


というふうに書かれていたんですが、インターネットで調べてみたらこれは実は素元の定義ではなく既約元というものの定義だそうです。

まぎらわしいですね。
これは私が読んでいる本が悪いのか。

私が群・環・体の勉強に使っている本は分かりやすい素晴らしい本ですけども、
環の定義として一般的には、乗法について可換であることは公理としませんが、可換環ではなく普通の環が乗法について可換であるとされていたりして、
素元の件も含めてちょっと一般的な定義とズレていますね。


それで、本当の素元の定義とは何かといいますと、

まず可換環においてp | aと書いたときa = xpとなるxが存在するという意味にして、まあ直感的にはpがaを割り切るといえますけども、

p | abであるならp | aまたはp | bであるとき、pは素元である
(pは0でも単元でもない)


ということになります。


しかし、素元と既約元は似ているというか、環よりもう少し条件を強くした代数系においては一致することがあるんですよね。

続きを読む

tag: 数学 群環体 証明 素数 方程式

近況報告というか話題のちゃんぽん

ただいま、記事「F#の基礎勉強まとめ (前編)」の後編を執筆中であります。
途中つなぎの記事を書くほど大規模なブログ記事を書くのは久しぶりですね。

現在、リスト、配列、タプル、レコードまで書き終わったのですが、判別共用体、パターンマッチ、例外を書いて手短に終わろうと思います。

ただし、パターンマッチが本当に内容的に濃い!
大変ですね。

さて、上記リンクの記事でも書いてあるように、F#の文法は解説しても、実際にプログラム書いたことがほぼ無いんですよね~。

というわけで、ちょっと前ですが、なにかプログラムを書こうということで、なんともベタなじゃんけんのプログラムを書きました。

せっかくなのでYahoo!ボックスに上げておきましたから、ご覧ください。
なにせF#の経験が浅いので、変な箇所があるかもしれませんが、ぷぷぷ~と笑ってないでコメントにてご指摘下さいませ。

Janken.txt (Yahoo!ボックス)
http://yahoo.jp/box/_9_RYk


このプログラムを書きながら思ったのですが、関数に引数として別の関数の戻り値を渡してもいいし、
関数に直接、別の関数を渡しちゃって、むこうの関数で引数を与えて戻り値を作ってもいい、というこの関数と値の区別のルーズさは特徴的ですね。

今回の場合は逆にそれがややこしくなって、変なプログラムになってしまったかもしれませんが…。

続きを読む

tag: プログラミング F# 数学 証明 論理学 勉強 群環体 結合法則 Nexus iPad

次のページ

当ブログをご利用(閲覧等)になる場合は必ず「当ブログの利用規定」をお守りください。