ブログ「サイバー少年」

ブログ「サイバー少年」へようこそ!
小学六年生ごろからプログラミングを趣味にしている高校生のブログです。
勉強したことについての記事などを書いています。フリーソフトも制作、公開しています。
(当ブログについて詳しくは「ブログ概要紹介」を参照)

サイバー少年が作ったフリーソフトは「サイバー少年の作品展示場」へ

スポンサーサイト

上記の広告は1ヶ月以上更新のないブログに表示されています。
新しい記事を書く事で広告が消せます。

tag:

群の準同型定理のイメージをやっと掴めた

群の準同型定理ですが、今まで本を読んで論理的に定理として成り立つことは分かっていたのですが、正直なところ言っている意味、イメージが分かりませんでした。

命題のイメージを掴むということは、わりと大事であると思います。

命題が、証明を読んで論理的に推論可能であることだけを知っていても、
結局なにを言ってるんだ??という状態では、どのように命題を利用していけばいいのか見当もつかないですからね。


イメージを掴むことを心がけてはいるのですが、今まで準同型定理はイメージできなかったんですよね。
体論に入っているというのに、最近ようやく理解できました。


準同型写像φ:G→G'について、φによるGの核(これはGの正規部分群)でGを類別した商群と、φによるGの像は同型であるという定理ですが、

残念ながら有限集合でしか通用しないイメージですが、ようするにGの像⊆G'はφが単射でない限りGより小さいので、まずGの核でGを類別してGより小さい商群を作ります。

このとき商群の中身がどうなってるかが肝心です。
これはφでG'に写したときに同じ元になるGの元をまとめた同値類系となっています。
(これを示すために証明が必要ですが、証明は本で読んでそこからイメージしました。)

ですからφが単射なら同値類は、それぞれひとつしか元を持ちません。
そうでなければどこかに2つ以上の元を持つ同値類があります。


そして、この商群とGの像が一対一に対応しているという話ですが、当たり前といえば当たり前であります。

Gの像と対応している商群の同値類は、Gの像と対応していることを考えれば必ず存在しますし、Gの像の中の同じ元へと写されるGの元は同じ同値類に属するはずですから、これは一対一となります。

この一対一の対応に則した写像を定めれば、その写像は全単射となりますね。
あとは、その写像が準同型写像の定義を満たすことが必要ですが、実はこのメカニズムはイメージできていません。

ただ要点は一対一対応があるということだと思うので、まあ大丈夫じゃないかなと思いますね。


ちなみにGの核は商群の元、同値類のひとつですが、φ(e)=e'より、Gの核には必ずGの単位元eが入っているので、
Gの核の元はすべてφ(e)と同じ値になるということでしたので、つまりすべてe'に写しますし、Gの核に入っていないようなφ(a)=e'となるaは存在しません。


以上です。
まだイメージを掴めていない人が、これを読んでも説明がヘタクソすぎてよく分からないと思いますが、私自身はだいぶイメージを掴めて満足しています。

自己満足の記事です。

わりと当たり前のことを言っているだけの定理だったのですが、イメージできたときは少し面白かったですね。

ただ、すごく大事な定理らしいのですが、どのように活用するのかよく分かりません。
どうなんでしょうか。

tag: 数学 証明 群環体 勉強 命題 同値 写像 同型 集合

コメント

2018/03/31以降はコメント、トラックバック不可です。

コメントの投稿

トラックバック

トラックバック URL
http://cyberboy6.blog.fc2.com/tb.php/523-f954d3c8
この記事にトラックバックする(FC2ブログユーザー)

当ブログをご利用(閲覧等)になる場合は必ず「当ブログの利用規定」をお守りください。

上記広告は1ヶ月以上更新のないブログに表示されています。新しい記事を書くことで広告を消せます。